Oscillations of Continuous Symmetric Random Walk

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Random Walk?)

Let Xk, k= 1, 2, 3, • • -, be a sequence of mutually independent random variables on an appropriate probability space which have a given common distribution function F. Let Sn = Xi+ • • • +Xn, then the event lim inf | S„\ = 0 has probability either zero or one. If this event has zero chance, we say F is transient; in the other case, | 5„| tends to infinity almost surely, and F is called recurre...

متن کامل

Markov Random Walk Representations with Continuous Distributions

Representations based on random walks can exploit discrete data distributions for cluster­ ing and classification. We extend such rep­ resentations from discrete to continuous dis­ tributions. Transition probabilities are now calculated using a diffusion equation with a diffusion coefficient that inversely depends on the data density. We relate this diffu­ sion equation to a path integral and d...

متن کامل

Random approximation of a general symmetric equation

In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.

متن کامل

Discrete random walk models for symmetric Lévy - Feller diffusion processes

We propose a variety of models of random walk, discrete in space and time, suitable for simulating stable random variables of arbitrary index α (0 < α ≤ 2), in the symmetric case. We show that by properly scaled transition to vanishing space and time steps our random walk models converge to the corresponding continuous Markovian stochastic processes, that we refer to as Lévy-Feller diffusion pr...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1976

ISSN: 0091-1798

DOI: 10.1214/aop/1176996035